Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 3595
1.  
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки O, A, B, C, D, F.

Если ко­ор­ди­на­та точки A равна  дробь: чис­ли­тель: 10, зна­ме­на­тель: 9 конец дроби , то числу 1 на ко­ор­ди­нат­ной пря­мой со­от­вет­ству­ет точка:

1) O
2) B
3) C
4) D
5) F
2.  
i

За­пи­ши­те (3x)y в виде сте­пе­ни с ос­но­ва­ни­ем 3.

1) 3 в сте­пе­ни левая круг­лая скоб­ка xy пра­вая круг­лая скоб­ка
2) 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка
3) 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби пра­вая круг­лая скоб­ка
4) 3 в сте­пе­ни левая круг­лая скоб­ка 2xy пра­вая круг­лая скоб­ка
5) 3 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 2y пра­вая круг­лая скоб­ка
3.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой n-го члена an  =  6n − 2. Най­ди­те раз­ность этой про­грес­сии.

1) 5
2) 7
3) −7
4) −6
5) 6
4.  
i

Если 15% не­ко­то­ро­го числа равны 33, то 20% этого числа равны:

1) 44
2) 46
3) 55
4) 56
5) 66
5.  
i

Ука­жи­те фор­му­лу для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если a1  =  5, a2  =  7.

1) a_n= минус 2n плюс 7
2) a_n=2n плюс 7
3) a_n=7n плюс 5
4) a_n=5n плюс 7
5) a_n=2n плюс 3
6.  
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что \angle AOC=107 гра­ду­сов, \angle BOM=113 гра­ду­сов. Най­ди­те ве­ли­чи­ну угла BOC.

1) 73 гра­ду­сов
2) 67 гра­ду­сов
3) 17 гра­ду­сов
4) 40 гра­ду­сов
5) 23 гра­ду­сов
7.  
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.

1) 53 см2
2) 48 см2
3) 53,5 см2
4) 54 см2
5) 56 см2
8.  
i

От листа жести, име­ю­ще­го форму квад­ра­та, от­ре­за­ли пря­мо­уголь­ную по­ло­су ши­ри­ной 8 дм, после чего пло­щадь остав­шей­ся части листа ока­за­лась рав­ной 9 дм2. Длина сто­ро­ны квад­рат­но­го листа (в де­ци­мет­рах) была равна:

1) 10
2) 7
3) 6
4) 9
5) 8
9.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  дробь: чис­ли­тель: a в квад­ра­те плюс 9a, зна­ме­на­тель: a плюс 1 конец дроби плюс дробь: чис­ли­тель: 8a, зна­ме­на­тель: a в квад­ра­те плюс a конец дроби имеет вид:

1) a плюс 8
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a плюс 1 конец дроби
3) a минус 8
4)  дробь: чис­ли­тель: a в квад­ра­те плюс 17a, зна­ме­на­тель: a в квад­ра­те плюс 2a плюс 1 конец дроби
5) 10 плюс дробь: чис­ли­тель: a в квад­ра­те плюс 7, зна­ме­на­тель: a плюс 1 конец дроби
10.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 81 конец ар­гу­мен­та : ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 82 конец ар­гу­мен­та равно:

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 82 конец ар­гу­мен­та конец дроби
2) 3
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 82 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 82 конец ар­гу­мен­та конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
11.  
i

Даны два числа. Из­вест­но, что одно из них боль­ше дру­го­го на 8. Ка­ко­му усло­вию удо­вле­тво­ря­ет боль­шее число x, если сумма квад­ра­тов этих чисел не мень­ше удво­ен­но­го квад­ра­та боль­ше­го числа?

1) x мень­ше или равно 4
2) x боль­ше или равно 4
3) x мень­ше или равно минус 4
4) x боль­ше или равно минус 4
5) x боль­ше или равно 16
12.  
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 20 кг све­жих.

1)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 минус a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
3)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 минус a конец дроби
4)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 плюс a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
5)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 плюс a конец дроби
13.  
i

Зна­че­ние вы­ра­же­ния НОК(18, 20, 45) + НОД(30, 42) равно:

1) 211
2) 186
3) 125
4) 181
5) 216
14.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 125 в сте­пе­ни x плюс 25 в сте­пе­ни x минус 2 умно­жить на 5 в сте­пе­ни x , зна­ме­на­тель: 5 в сте­пе­ни x левая круг­лая скоб­ка 5 в сте­пе­ни x минус 1 пра­вая круг­лая скоб­ка конец дроби .

1) 5 в сте­пе­ни x плюс 2
2) 5 в сте­пе­ни x минус 2
3) 125 в сте­пе­ни x минус 2
4) 5 в сте­пе­ни x
5) 2 умно­жить на 5 в сте­пе­ни x
15.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс 6x минус 25, зна­ме­на­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6;6 пра­вая квад­рат­ная скоб­ка равно:

1) 4
2) 9
3) 6
4) 3
5) 7
16.  
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 15, от­ли­ли пятую (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.

1) 650
2) 675
3) 550
4) 700
5) 600
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 10 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1) 5
2) 10
3)  целая часть: 10, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
4) 20
5)  минус целая часть: 9, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
18.  
i

Наи­мень­шее целое ре­ше­ние не­ра­вен­ства \lg левая круг­лая скоб­ка x в квад­ра­те минус x минус 6 пра­вая круг­лая скоб­ка минус \lg левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка \leqslant\lg4 равно:

1) −3
2) −2
3) 3
4) 4
5) 7
19.  
i

Витя купил в ма­га­зи­не не­ко­то­рое ко­ли­че­ство тет­ра­дей, за­пла­тив за них 36 тысяч руб­лей. Затем он об­на­ру­жил, что в дру­гом ма­га­зи­не тет­радь стоит на 2 ты­ся­чи руб­лей мень­ше, по­это­му, за­пла­тив такую же сумму, он мог бы ку­пить на 3 тет­ра­ди боль­ше. Сколь­ко тет­ра­дей купил Витя?

20.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 14 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 13 пра­вая круг­лая скоб­ка боль­ше 0,32.

21.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.

22.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .

23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 6 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 ко­рень из 2 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 ко­рень из 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 2 плюс ко­рень из 5 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та .

24.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 20. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

25.  
i

Най­ди­те про­из­ве­де­ние суммы кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни 6 на их ко­ли­че­ство.

26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: синус в квад­ра­те 184 гра­ду­сов, зна­ме­на­тель: 4 синус в квад­ра­те 23 гра­ду­сов умно­жить на синус в квад­ра­те 2 гра­ду­сов умно­жить на синус в квад­ра­те 44 гра­ду­сов умно­жить на синус в квад­ра­те 67 гра­ду­сов конец дроби .

27.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 8 Пи конец дроби .

28.  
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом 4 ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 5S.

30.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 121 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 22 конец дроби .